由英国剑桥的一家人工智能公司Intellegens开发的一种新的机器学习算法已被用于设计一种新的用于金属增材制造的镍基合金。

减少15年的努力节约1000万美元的研发成本
这是由多家商业合作伙伴和剑桥大学合作开展的一项研究合作。根据Intellegens的说法,该算法为团队节省了大约15年的材料研究时间和大约1000万美元的研发成本。
Intellegens的Alchemite™深度学习算法设计的新合金是通过定向能量沉积(DED)金属3D打印工艺进行制造的,该合金可满足增材制造所需的性能目标,用于制造喷气发动机零部件。
通过传统研究技术开发新材料仍然是一个漫长而昂贵的过程,通常涉及相当程度的试错过程和成本,而用于定向能量沉积(DED)金属3D打印工艺的新合金则被认为特别具有挑战性。迄今为止,DED仅用于加工大约10种镍基合金成分,严重限制了可用于推动进一步研究的数据量。
Alchemite为合金研究团队提供了解决这种数据缺乏的方法,以及加速整个材料选择过程。Alchemite的算法能够从完成率仅为0.05%的数据中学习,能够链接和交叉引用可用数据,验证潜在新合金的物理性质,并准确预测它们在现实应用场景中的运行方式。
随着Alchemite的应用以及最合适的合金的确定,研究团队开始了一轮实验以确认新材料的物理性质。该团队希望新合金具有优越的加工性,在成本,密度,相稳定性,抗蠕变性,抗氧化,疲劳寿命和耐热应力等方面符合期望。结果表明,与其他商业合金相比,新合金更适合DED增材制造工艺应用。
根据Intellegens和剑桥大学皇家学会大学,Alchemite具有深度学习能力,能够快速查明数据之间的关系,因此具有独特的优势。通过机器学习,团队能够使用大型热阻测量数据库来指导合金加工性的研究,从而列出最有可能提供正确特征的材料组合。结果不言自明,这种新的合金为研发节省了大量的时间和金钱。
全世界有数以百万计的商业材料,其特点是数百种不同的特性。使用传统技术探索我们对这些材料所了解的信息,提出新的物质,基质和系统,是一个艰苦的过程,可能需要数月甚至数年。通过了解现有材料数据中的基础相关性,估算缺失的属性,Alchemite算法引擎可以快速,高效,准确地提出具有目标属性的新材料 – 从而加快开发过程。
3D打印产品取代动漫手办市场指日可待?
2020-08-04创意3D打印——威布向蒸汽朋克致敬之暗黑骑士
2016-03-05全球首台全身3D扫描仪亮相 3D生物医学运用上的又一里程碑
2019-03-12极限抗拉强度1100 MPa,德国亚琛3D打印高熵合金NADEA
2020-11-30美国科学家用3D打印技术制造核电厂所需硅化铀核燃料
2018-08-07Rocket Lab的下一次发射将把30颗卫星及G胖的3D打印小矮人送入轨道
2020-11-03瑞士科学家尝试3D打印缆索地板系统,混凝土时代将成为过去?
2019-02-123D打印核心部分只有核桃大小,将能够改变航空发动机制造方法。
2018-12-142018年世界3D打印年会于10月26日在沪举行
2018-11-023D打印陶瓷技术如何改善隐形牙齿矫正器存在的问题
2020-01-03版权所有 ? 2013 - 2025 威布三维 苏ICP备15040619号-3 服务热线:4008-676-070